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Abstract. Cryptocurrencies continue to attract the attention of global
�nancial systems as an emerging payment system due to their e�cient,
transparent, and auditable mechanism to settle cross-border transac-
tions. They come in two types depending on their underlying networks:
permissionless (Bitcoin BTC) and quasi-permissioned (Ripple XRP).
The permissionless type is unwelcome in the formal �nancial system due
to obvious regulatory concerns. Whereas, the regulated, quasi-permissioned
type has acceptability concerns due to the extreme volatility of the un-
derlying currencies. The whole crypto market is typically characterized
by high volatility due to factors that are not associated with traditional
markets like equity, bond, commodities, crude et al. The concern about
volatility discourages the acceptance of cryptocurrencies in traditional
�nancial systems. Therefore, it is important to study the volatility of
cryptocurrencies in order to know what causes sudden or frequent �uc-
tuations in crypto markets. Though only a handful of cryptocurrencies
like XRP are used by the formal �nancial system, the volatility in the
crypto market re�ects across all currencies. XRP exhibits comovement
with BTC and other major cryptocurrencies in terms of volatility and
price. Though BTC is not used by the formal �nancial system, but its
volatility in�uences the cryptocurrencies used by them. This study will
help �nancial institutions e�ectively mitigate the undue risk of incur-
ring a high transaction cost while using cryptocurrency as a payment
instrument. Our work sheds light on the relationship between transac-
tion volume vis-a-vis the price of a cryptocurrency. We used ARIMA
and SARIMA algorithms to forecast the transaction volume of BTC and
XRP over a period of six months. Our trained model could successfully
predict the transaction volatility for both BTC and XRP but not the
volatility in their prices. The linear models we used fall short in price
prediction; however, training the models over a longer period of time with
additional inputs needs to be investigated. Since the size of a transaction
block is �xed; only a limited number of high-fees transactions will be ac-
commodated by block miners. Our result to predict volume volatility is
useful in scheduling transactions in a block to negotiate transaction fees.
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1 Introduction

Over the past decade, the market for cryptocurrencies has grown remarkably [6].
There have not only been a proliferation of cryptocurrencies but also deriva-
tives market of leading cryptocurrencies such as bitcoin (BTC) have developed.
The transaction volume and market capitalization of cryptocurrencies has also
increased remarkably, thereby positioning cryptocurrencies as a disruptive in-
novation in global �nancial markets. However, a representative feature of these
digital assets is their high volatility [14]. Consequently, there are concerns [13]
about stability of these digital assets relative to conventional assets. There is
also regulatory uncertainty owing to ambiguity in classifying them as currencies,
securities or money service [30].

Volatility of crypto assets is primarily driven by speculation by investors
who bet on price movement and trade accordingly. Prospects of windfall from
guessing the swings lures speculative traders as in securities and other �nancial
markets. For instance, expecting price of a cryptocurrency to surge and buying
before it does so or short selling before the price crashes are risks that traders
and investors undertake routinely. However, there is evidence of comovement of
prices among cryptocurrencies but lower correlation with conventional assets [4].
Another peculiarity of cryptocurrencies is that the technology changes are rapid
and there is a lack of clarity among investors. The variety and volumes of trans-
actions in cryptocurrency markets are driven by developments in blockchain,
network designs and emerging architectures. Furthermore, with large population
of noise traders, volatility in cryptocurrency markets as in the �nancial markets
is inevitable. Traders or investors who make their decisions without advanced
fundamental or technical analysis. As in the securities markets, cryptocurrency
markets are also prone to noise trading and millions of amateur traders and in-
vestors are lured into taking positions with the prospects of considerable gains.
Also, the barriers to entry are low.

Understanding the volatility of cryptocurrencies is necessary for the following
three reasons: i) it provides insights into stability of the currencies; an important
attribute for their greater adoption in formal transaction systems and suitability
for enterprise smart-automation requirements. The speed of XRP transactions
has implications on their volatility exposure relative to �at currencies. For ex-
ample, SWIFT transactions have much longer volatility exposures, whereas in
XRP-based quasi real-time transactions, the need for hedging is obviated. Con-
sequently, the associated cost is lower in crypto assets. This would enable crypto
assets to be appealing for safe and secure payment systems such as Moneygram.
ii) in contrast to permissionless �avor of cryptocurrency, the semi-permissioned
�avor has a set of governing nodes/computers who may manipulate the liquid-
ity in the network. iii) vis-a-vis centralized systems, decentralized systems o�er
high traceability and lower cost. But its volatility continues to be a barrier to
adoption of decentralized payments systems and Stablecoins are emerging as an
alternative [25]. Stablecoins have inbuilt price stabilization mechanisms to match
the price of some other sovereign �at currency that is stable [24].
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In the context of volatility, it should be noted that there are fundamental
di�erences between volatility of �at currencies and cryptocurrencies. Fiat cur-
rencies are regulated and governed by central banks and their stability ensures
liquidity in foreign exchange markets. There are well-established networks such
as SWIFT that facilitate the movement of money across nations with the help of
at least one stable currency. When multiple stable currencies are involved in the
movement of money, each of the currencies in the basket a�ects the �nal amount
represented in destination currency. Therefore, it is imperative to understand
currency volatility and how volatility of cryptocurrencies compares with that
of �at currencies is critical for development of the market and decisions about
regulation. The e�ect of factors on movements of a currency's exchange rate
can be periodic (as time changes), asymmetric (a�ects only one side of the cur-
rency pair), associative (a�ects both sides of the currency pair). As volatility of
cryptocurrencies continues to be debated, the stablecoin movement and need for
stable crypto assets has gained attention for those seeking greater functionality
and viability of the currencies. Attempts to peg cryptocurrencies to the US dol-
lar (e.g., Tether) or assets such as oil (e.g., Petro cryptocurrency in Venezuela)
to stabilize the value of the cryptocurrency promise to popularize use of these
stable currencies for transactions. Cross-border payments also stand to bene�t
from payment solutions involving stable crypto assets. However, owing to lack
of clarity on cryptocurrencies, there are concerns about their stability and even
complete collapse of prices [12,7].

Key Findings:

� We found that our models predict the transaction volume of XRP and BTC
with an accuracy that is signi�cantly better than a baseline prediction model.

� Accounting for seasonality in the time-series, SARIMA model adopted in the

prediction of daily transaction volumes reduces prediction error as compared

to the baseline model.

� There is a negligible correlation between stock market volatility (VIX), XRP,
and BTC's daily transaction volumes.

� Our �ndings suggest that cryptocurrency volatility is amenable to forecast-
ing, using time-series models.

� Transaction volumes and prices exhibit fundamentally di�erent behaviour

that needs deeper examination for assessment of stability of the cryptocur-

rencies.

Organization: The following section provides background and motivation for
this direction of work on the cryptocurrency volatility. Section 3 presents infor-
mation about our datasets and approach for forcasting models. Section 4 and 5
present our results on forecast of BTC and XRP transaction volumes. Section
6 and 7 present our results on forecast of BTC and XRP prices. In Section 8,
we present the related work along with comparative discussion. We conclude in
Section 9 listing our �ndings highlighting this works potential future directions.
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2 Background and Motivation

Traders and banks across the world are interested in understanding the volatility
patterns in currencies and commodities in which they trade. It is imperative for
them to understand currency volatility because it helps them to manage risks
e�ectively; lack of it a�ects their pro�t margins adversely. There are empirical
studies that highlight the patterns of volatility that are periodic [28]; for ex-
ample, as stock markets open for trade in di�erent major economies across the
continents. Other factors such as news about macroeconomic/geo-political de-
velopments or regulatory announcements et al a�ect the exchange rates (thus
the volatility) of the currencies [42,19].

There are numerous factors that are responsible for volatility of a currency.
The more we understand about the factors the better we provision for our expo-
sure to risks emanating from the volatility. As cryptocurrencies are emerging as
an alternative investment instrument for a few, there is an interest to study the
additional factors spece�c to this class of assets' volatility. This study will not
only be helpful for the investors and hedge fund managers but also the institu-
tions that make use of this asset class to map conventional assets to crypto-assets
in order to e�ciently move conventional assets across the network (for example,
remittance). While doing so, these institutions need to pay a transaction fees
payable in the form of the native currency (i.e., cryptocurrency) of the respec-
tive network. Scheduling their asset movement transactions in order to minimize
their transaction fees is a valid expectation, which can be assisted by a good
understanding of the volatility patterns in respective network's cryptocurrency.

Though the phenomenon of volatility is well-studied for conventional asset
classes, it is still evolving for cryptocurrencies. One of the distinguishing charac-
teristics between the conventional class and the cryptocurrency class is that the
former is well-regulated, mature, traded in spece�c time slots whereas the cryp-
tocurrency market is always open and largely unregulated. Technological and
regulatory advancements are underway to inherit bene�ts of cryptocurrency net-
works into the conventional �nancial systems. XRP network is one such example
where its operator Ripple tries to address the regulatory concerns by relying on
tranditional banks as its entry and exit points for asset transfer (remittance)
so that the valid criticism of AML, usually associated with Bitcoin like assets,
is addressed e�ectively. Ripple allows its member banks to purchase XRPs so
that these banks convert their conventional assets into XRP, transfer them to
end-locations on XRP network, and then convert the transferred XRP into desti-
nation asset class. Though Ripple reduces the asset movement time and reduces
the conventional currency's volatility a�ect on the value of asset being moved,
there still remains the possibility of XRP being volatile due to three factors: i)
inherent volatility of XRP caused by other cryptocurrencies connected to it at
crypto-exchanges or via general sentiments of irrational actors in the network,
ii) volatility in the conventional currency pegged with XRP at the transaction
initiation point, iii) similarly, volatility in the conventional currency pegged with
XRP at the transaction termination point. Therefore it is interesting to extend
the study of causal relationship across conventional asset classes to cryto-class,
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considering the additional characteristics/constraints that are spece�c to the na-
ture of cryto-class and also the way they are designed and integrated to deliver
a �nancial application. In Bitcoin network, the supply of BTC is deterministic
and hard-coded in the network protocol � a strong constraint. Whereas, in XRP
network, by design, all coins are pre-mined and a large volume is reserved as
liquidity pool, but seldom used to control volatility as done by central banks in
conventional �nacial systems.

In this work we chose BTC and XRP because they represent two distict
groups in this non-conventional asset class of cryptocurrencise. BTC network
being permissionless and only governed by the hard-coded rules in its protocol
with no provision for managed liquidity. XRP network being a semi-permissioned
and by design takes into consideration the regulatory provisions of conventional
�nancial system with the provision of liquidity by its operator (Ripple3). There
is a evidence that BTC is the leader in cryptocurrencies and its volatility is
closely followed by the other members in the class. Private investment bankers,
hedge fund managers, retail customers from a unstable �nancial market rely
on cryptocurrencies as an alternative to store of value. This a�ects supply side
of the tokens (the unit of cryptocurrency) and causes volatility and dramatic
price �uctuation. Until this asset class becomes large enough and as mature as
conventional asset classes, volatility will remain its critical charesteristic and
therefore study of cryptocurrency volatility is important.

3 Data and Approach

We run full-history servers for Bitcoin and XRP protocols. We extract the trans-
action data from the ledgers available on our servers. This allows us access all
the transactions from the past that are executed on these two public blockchain
networks. We use the time-series data from BTC and XRP ledgers to study
volume and price volatility, their correlation, and potential forecasting methods.
We use SARIMA (Seasonal Autoregressive Integrated Moving Average) model
to forecast the transaction volume as well as price of the two cryptocurrencies.

The dataset consists of volume of daily transactions for BTC and XRP be-
tween the time period of July 2020 and July 2021. In January, 2018, XRP had
reached an all-time-high of USD 3.84 and since then, it has experienced a fall.
However, if there is comovement with BTC and altcoins, XRP is likely to rally,
contributing to the volatility. Its ability to act as a hedge or a safe-haven is also
in�uenced by the direction and strength of the comovements. The daily values
of VIX Granger have been sourced from the CBOE (Chicago Board Options
Exchange) website for the same time period of July 2020 and July 2021.

We follow forecasting models developed for various asset classes including cur-
rency and commodities, by contrast with conventional markets, crypto markets
function continuously. This results in availability of high frequency data relative
to conventional �nancial markets including stock markets that have speci�ed

3 https://ripple.com/insights/liquidity-explained/
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opening and closing schedules in a day and remain shut over the weekend. Our
approach to forecast the volume and price of BTC, XRP involves the following:

Step 1 - Stationarity Check: As a standard practice, we perform the Aug-
mented Dickey-Fuller (ADF) test [32] and the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test [36] to check for unit-root and trend-stationarity, respec-
tively. The properties of a stationary time-series do not depend on the time at
which the series is observed. The ADF tests the null hypotheses that a �unit-
root� is present in the time-series. If a unit root is present, then the time
series is non-stationary. Failure to reject the null implies non-stationarity
whilst rejection of the null does not imply that the series is stationary.

Step 2 - SARIMA Parameter Identi�cation: Following the tests of sta-
tionarity of the series, we identify the AR and MA parameters for SARIMA
model. Given that the series is stationary, the order of integration (d) is zero.
The orders of AR(p) and MA(q) are attained by plotting the auto correla-
tion function (ACF) and partial autocorrelation function (PACF) plots of
the series. The lag values from these plots give us the starting parameters.
Order p of the AR process is de�ned as the most extreme lag of the response
variable that should be used as predictor in our model. We use the PACF to
identify the lag order after which PACF plot �crosses� the upper con�dence
interval for the �rst time. These p lags will act as our features while fore-
casting the AR time series. Order q of the MA process is obtained from the
ACF plot using the rule that it is the lag after which the ACF plot crosses
the upper con�dence interval for the �rst time.
To get statistical signi�cance of empirically selected SARIMA parameters,
information-criteria-based test such as AIC (Akaike Information Criterion)
is widely used [22]. The aim of these tests is to �nd the parameters that give
a model with the lowest value of the selected information criterion. AIC [31]
is an estimator of out-of-sample prediction error and thereby relative quality
of statistical models for a given set of data. Given a collection of models for
the data, AIC estimates the quality of each model, relative to each of the
other models. Suppose we have a statistical model of some data. Let k be the
number of estimated parameters in the model. Let L̂ be the maximum value
of the likelihood function for the model. Then the AIC value of a model is:

AIC = 2k − 2ln(L̂) (1)

Step 3 - Granger Causality Test: The Granger causality test is a statistical
hypothesis test for determining whether one time series is useful for forecast-
ing another. If probability value is less than any α level, then the hypothesis
would be rejected at that level.

In our time-series model speci�cation, the dependent variable used for train-
ing and forecasting is logarithm of the volume of XRP. We follow SARIMAmodel
in our analysis. In contrast to ARCH and GARCH models that model the second
moment of the series or conditional variance, we are interested in modeling the
�rst moment of the time-series, that is the conditional mean. ARIMA dynamic
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forecasting model has been attempted in limited number of studies to predict
XRP prices [40]. Adjusting for seasonality in ARIMA forecasts for XRP and
BTC transaction volumes is novel. The experiments are carried out using the
following Python libraries: statsmodels.tsa.stattools, statsmodels.api,

pandas and pmdarima. The auto_arima function is employed to arrive at the
best �t ARIMA and SARIMA models for the considered time series. The train-
test split has been undertaken in the ratio of 4:1 and the root mean squared error
is utilised to assess the accuracy of test set predictions by the model. Further,
the grangercausalitytests function is used to evaluate the causality levels
between BTC's daily transaction volume and VIX Granger.

4 BTC Transaction Volume Forecast

In this section, we present results of our analysis based on the steps leading to
our prediction model for BTC's transaction volume.

4.1 Stationarity Check

Figure 1a, shows raw data on transaction volume of BTC and Figure 1b shows
the di�erentiated BTC trade volume vs time. Figure 3 (a) and (b) show the
ACF and PACF plots respectively. In this test, we failed to reject the null, and
therefore conclude that the BTC volume series (in logs) was trend-stationary
(p-value 0.1). The KPSS test is used for testing the null hypothesis that a time
series is stationary around a deterministic trend (i.e., trend-stationary) against
the alternative of a unit-root. The null hypothesis in the KPSS test is that series
is trend stationary. The alternative hypothesis is the presence of a unit-root.

Fig. 1: Trade volume vs time of Bitcoin

(a) Raw (b) Di�erentiated

4.2 SARIMA Parameter Identi�cation
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Table 1: AIC values for various
parameters (BTC Volume)

ARIMA model Intercept
1 (1,0,1)(0,0,0)[7] 17467.09
2 (0,0,0)(0,0,0)[7] 17771.62
3 (1,0,0)(1,0,0)[7] 17439.16
4 (0,0,1)(0,0,1)[7] 17516.55
5 (0,0,0)(0,0,0)[7] 18635.04
6 (1,0,0)(0,0,0)[7] 17465.56
7 (1,0,0)(2,0,0)[7] 17439.38
8 (1,0,0)(1,0,1)[7] 17440.38
9 (1,0,0)(0,0,1)[7] 17441.05
10 (1,0,0)(2,0,1)[7] 17438.08
11 (1,0,0)(3,0,1)[7] 17426.59
12 (1,0,0)(3,0,0)[7] 17435.57
13 (5,0,1)(3,0,3)[7] inf, Tim
14 (5,0,3)(3,0,3)[7] 17373.96
15 (5,0,3)(2,0,3)[7] 17380.81
16 (5,0,3)(3,0,2)[7] 17380.24
17 (5,0,3)(4,0,3)[7] 17375.87
18 (5,0,3)(3,0,4)[7] 17376.93
19 (5,0,3)(2,0,2)[7] 17379.27
20 (5,0,3)(2,0,4)[7] 17381.82
21 (5,0,3)(4,0,2)[7] inf, Tim
22 (5,0,3)(4,0,4)[7] 17379.99
23 (6,0,3)(3,0,3)[7] 17374.36
24 (5,0,4)(3,0,3)[7] 17378.44
25 (4,0,4)(3,0,3)[7] 17382.23
26 (6,0,2)(3,0,3)[7] inf, Tim
27 (6,0,4)(3,0,3)[7] 17384.01
28 (5,0,3)(3,0,3)[7] inf, Tim

Table 1 reports the AIC values for parame-
ters in SARIMA model for BTC transaction
volumes. The missing values (represented by
a - ) in these table are the instances where
training of ARIMA model did not converge.
Based on the signi�cance of seasonality pa-
rameters that the Auto-ARIMA function in
Python suggested, we trained our SARIMA
(p,d,q) (P,D,Q) [2] model with parameters
(5,0,3) (3,0,3) [7]. For this, we divided our
transactions volume dataset into training and
testing sets. The training and testing split
has been carried out in the ratio of 4:1. We
trained our SARIMA model on training set
alone while keeping testing set hidden and
then predicted transaction values for dates in
testing set using our trained model. We also
compared the testing data set with predicted
data of BTC volumes in Figure 2 to see how
our model performed.

In order to test our prediction, we com-
pare our model against the baseline model
which is simply the average of ground truth
values. We use this value as the prediction
for all days of the test set. De�ning residual
value as a variable named res.

res = predicted− truth (2)

We de�ne Root Sum Square Error (RSSE)
as,

RSSE =
√∑

res2 (3)

Using the above formula for error calculation,
with the baseline model, we get RSSE = 44881.84 Using the same formula on the
SARIMA forecast model, we get RSSE = 40867.45. Clearly, the error is lower in
the SARIMA forecast model as compared to the baseline model. This suggests
that the SARIMA forecast model is better than the baseline average model for
forecasting BTC transaction volume.

4.3 Granger Causality Test

We performed Granger Causality Test to assess the causality of BTC Daily
Transaction Volume on VIX Granger and VIX Granger on BTC Daily Transac-
tion Volume up to four lags. No signi�cant causality exists: either of VIX Granger
on BTC Daily Transaction Volume or of BTC Daily Transaction Volume on VIX
Granger.
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Fig. 2: Comparison of predicted values with actual series (for BTC volume)

Though studies such as [17] have shown that BTC daily transaction volume
returns are signi�cantly impacted by VIX Granger while analysing data of 2017
and 2018, the recent transaction volumes of BTC are found to hold insigni�cant
levels of causal relationships with VIX Granger. Besides Granger Causality tests,
the regular bidirectional causality between BTC transaction volumes and VIX
Granger is also found to be much lower than the signi�cance levels. This suggests
that whilst Granger Causality between crypto currency may exist in a certain
time period, it is not necessary to be so in another. This also necessitates the
need for dynamically updating the forecast models for improved understanding
of structural relationships.

Table 2: ADF and KPSS test results for BTC and XRP currencies



10 S. Gaurav et al.

(a) ACF Plot for BTC (b) PACF Plot for BTC

(c) ACF Plot for XRP (d) PACF Plot for XRP

Fig. 3: ACF & PACF for �rst di�erencing of daily transaction volume

5 XRP Transaction Volume Forecast

5.1 Stationarity Check

Fig. 4: XRP trade volume vs time

Figure 4, shows raw data on transac-
tion volume of XRP. The results of the
ADF test for XRP transaction volumes
suggests that non-stationarity can be re-
jected (p-value: 0.004). The KPSS test
suggests that time-series for XRP volume
is trend-stationary (p-value=0.1). Follow-
ing the tests of stationarity of the series,
we identi�ed the parameters for SARIMA
model. Figures 3 (c) and (d) report the
ACF and PACF plots of the �rst dif-
ferencing of XRP daily transaction vol-
ume. Analysis of the series using the Auto
ARIMA function gives the best �t model
is ARIMA for the series, which is ARIMA
(2,1,2)(2,1,1)[7].
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5.2 SARIMA Parameter Identi�cation

ARIMA model Intercept
1 (1,1,1)(0,1,0)[7] inf, Time
2 (0,1,0)(0,1,0)[7] 12765.019
3 (1,1,0)(1,1,0)[7] 12442.344
4 (0,1,1)(0,1,1)[7] 12267.730
5 (0,1,1)(0,1,0)[7] inf, Time
6 (0,1,1)(1,1,1)[7] 12266.761
7 (0,1,1)(1,1,0)[7] inf, Time
8 (0,1,1)(2,1,1)[7] 12259.751
9 (0,1,1)(2,1,0)[7] inf, Time
10 (0,1,1)(3,1,1)[7] 12260.829
11 (0,1,1)(2,1,2)[7] 12261.102
12 (0,1,1)(1,1,2)[7] 12270.765
13 (0,1,1)(3,1,0)[7] inf, Time
14 (2,1,2)(3,1,1)[7] 12164.200
15 (2,1,2)(2,1,2)[7] 12164.629
16 (2,1,2)(1,1,0)[7] inf, Time
17 (2,1,2)(1,1,2)[7] 12171.276
18 (2,1,2)(3,1,0)[7] inf, Time
19 (2,1,2)(3,1,2)[7] 12165.699
20 (1,1,2)(2,1,1)[7] 12164.273
21 (3,1,2)(2,1,1)[7] 12164.933
22 (2,1,3)(2,1,1)[7] 12186.092
23 (1,1,3)(2,1,1)[7] 12215.801
24 (3,1,3)(2,1,1)[7] 12163.642
25 (2,1,2)(2,1,1)[7] 12165.291

Table 3: AIC values for various
parameters (XRP Volume)

Table 3 shows the AIC values for vari-
ous parameter for XRP volume. We trained
our SARIMA [2] model with parameters
(2,1,2)(2,1,1)[7]. We also compared the testing
data set with predicted data in Figure 2 to see
how our model performed.

Figure 5b shows the testing set vs fore-
cast data for XRP transaction volume. In order
to test our prediction, we compare our model
against baseline model which is simply the av-
erage of the ground truth values. We use this
value as the prediction for all days of test set.
Using the RSSE formula (as described in previ-
ous section) for error calculation, with baseline
model, we get RSSE = 4227404.29. Using the
same formula on the SARIMA forecast model,
we get RSSE = 3972818.25. Clearly, the error
is lower in the SARIMA forecast model as com-
pared to the baseline model. This suggests that
the SARIMA forecast model is better than the
baseline average model.

5.3 Granger Causality Test

The Granger Causality Test has been performed
to assess the causality of XRP Daily Transac-
tion Volume on VIX Granger and VIX Granger
on XRP Daily Transaction Volume up to four
lags. No signi�cant causality has been estab-
lished either of VIX Granger on XRP Daily
Transaction Volume or of XRP Daily Transac-
tion Volume on VIX Granger. Besides Granger
Causality Tests, the regular bidirectional cor-
relation between XRP transaction volumes and
VIX Granger is also found to be much lower
than the signi�cance levels.

6 Forecasting BTC Price

Figure 6a shows plot of raw data on closing price of BTC and Figure 6b shows the
same data with �rst order di�erencing. We performed ADF and KPSS Test to
check for stationarity. The results of the ADF test are for BTC closing price are
depicted suggest that we cannot reject the null (p-value: 0.893420), indicating
non-stationarity. To ensure stationarity, we �rst di�erenced the BTC price series.
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Fig. 5: Comparison of testing set vs predicted values (between May & June 2021)

(a) for BTC (b) for XRP

Fig. 6: Closing price of Bitcoin

(a) Raw (b) First order di�erenciated

The results of the ADF test are for �rst order di�erence of BTC closing price
results in rejection of the null of presence of unit-root (p 0.000)

In the KPSS test we found that the BTC price series was not trend-stationary
(p=0.1). Therefore, to make it trend-stationary we performed �rst order di�er-
encing. We performed �rst order log di�erencing [15] i.e.,:

data(t) = data(t)− data(t− 1) (4)

Series is stationary. We reject the null that there is a unit root in the series,
indicating that the time series is stationary. Following the tests of stationarity
and di�erencing of the series, we identi�ed the parameters for SARIMA (p,d,q)
model. Figures 7 (a) and (b) report the ACF and PACF plots of the �rst di�er-
encing of BTC closing price. BTC Price could not be forecasted using SARIMA.
The best �t model was ARIMA (0,0,0) (0,0,0) [0], indicating that none of the
previous values bear notable signi�cance in the predictions of BTC closing price.

AIC results for BTC Price are reported in Table 4a.
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(a) ACF Plot for BTC (b) PACF Plot for BTC

(c) ACF Plot for XRP (d) PACF Plot for XRP

Fig. 7: ACF & PACF for �rst di�erencing of daily closing price

7 Forecasting XRP Price

In this section, we describe the data and methods, and present results of our
analysis based on the steps leading to our prediction model.

Figure 8a shows raw data on closing price of XRP and Figure 8b shows the
�rst order di�erencing on the same data. The results of the ADF test for XRP
price suggests that we fail to reject the null of presence of a unit-root (p-value:
0.513). To remove the trend component of the time series and ensure stationarity,
the �rst order di�erencing of the XRP closing price is performed.

The results of the ADF test are for First order di�erence of XRP closing
price are depicted below (p-value: 0.000). Rejection of the null suggests that
non-stationarity is not a concern for the �rst di�erenced series. The KPSS test
suggests that the time-series for XRP price was trend-stationary (p=0.1). Figure
7 reports the ACF and PACF plots of the �rst di�erencing of XRP closing price.

Table 4b reports AIC values for XRP Price. As in the case of BTC Price,
SARIMA is not able to forecast the XRP's price. The best �t model was ARIMA(0,0,0)
(0,0,0) [0], indicating that none of the previous values bear notable signi�cance
in the predictions of XRP closing price.



14 S. Gaurav et al.

Table 4: AIC values for various parameters
(a) BTC

ARIMA model Intercept

1 (2,0,2)(0,0,0)[0] 6395.608

2 (0,0,0)(0,0,0)[0] 6393.827

3 (1,0,0)(0,0,0)[0] 6392.967

4 (0,0,1)(0,0,0)[0] 6393.374

5 (0,0,0)(0,0,0)[0] 6392.516

6 (1,0,1)(0,0,0)[0] 6394.066

(b) XRP

ARIMA model Intercept

1 (2,0,2)(0,0,0)[0] -925.765

2 (0,0,0)(0,0,0)[0] -931.723

3 (1,0,0)(0,0,0)[0] -930.675

4 (0,0,1)(0,0,0)[0] -930.618

5 (0,0,0)(0,0,0)[0] -933.569

6 (1,0,1)(0,0,0)[0] -928.774

8 Related Work and Discussion

8.1 Forecasting Crypto-Volatility

The volatility forcasting models are not limited to the �nancial markets alone,
they are also well-studied in other demand-oriented assets such as electricity,
oil and gas. In [9], an investigation of the empirical properties of crude oil,
natural gas, and electricity price volatility using a range of univariate and mul-
tivariate GARCH models is presented. Cryptocurrencies, unlike �at currencies,
are programmed to limit the supply of the currency as is the case with natu-
ral resources oil and gas. The scarcity in cryptocurrency can be considered as
arti�cial scarcity, whereas that in the context of oil and gas is limited by the
availability and exploration potential of the natural resources. Nevertheless, ar-
ti�cial scarcity does occur in the form of supply shocks that are often in�uenced
by cartelisation of oil markets. In [28], the authors �nd that the intraday rates
provide the most accurate forecasts for one-day and one-week forecast horizons,
while implied volatilities are at least as accurate as the historical forecasts for
one-month and three-month horizons. In [38,41], the authors present whether

Fig. 8: Closing price of XRP

(a) Raw (b) First order di�erenciated
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evolution in the number of Google Internet searches for particular keywords can
predict volatility in the market for a foreign currency. In a recent study [39], the
authors use daily data for cryptocurrencies like Ripple, Ethereum, and Bitcoin,
to test for the long memory property; they �nd that squared returns of these
three cryptocurrencies have a signi�cant long memory but best �tted GARCH
model extensions di�er. They �nd Hyperbolic GARCH (HYGARCH) model to
be the best �tted model for Bitcoin whilst Fractional Integrated GARCH (FI-
GARCH) model with skewed student distribution produces better estimations
for Ethereum as well as Ripple returns. A recent study [10], using uncertainty
as predictors of cryptocurrency volatility, �nds that with respect to uncertainty
variables the VIX-index is consistently negative correlated with occurence of
bubble whilst the EPU-index largely exhibits positive associations with bubbles.
Another study [20] surveys the evidence on return and volatility spillovers of
cryptocurrencies and �nds that BTC is the most in�uential in terms of transmit-
ter as well as receiver of spillovers from cryptocurrencies and alternative assets.
Ethereum, Litecoin, and Ripple XRP were found to be signi�cantly interlinked
with Bitcoin in the sense that there is a tendency to �follow the leader� in cer-
tain time windows. In [20], it is concluded that: although return spillovers are
more pronounced, volatility spillovers often present a bi-directionality. Volatility
shock transmission is detected among Bitcoin and sovereign �at currencies, while
economic policy uncertainty is not in�uential. There is also signi�cant evidence
on shock transmission among leading cryptocurrencies as well as spillover e�ects
from cryptocurrency markets to conventional �nancial markets [16].

An attempt to forecast the price series of the crypto-market leader Bitcoin
(BTC) using models such as ARIMA (Auto Regressive integrated Moving Av-
erage) have yielded inconclusive results [37]. A few studies have employed deep
learning algorithms to predict cryptocurrency prices. Research has demonstrated
notable improvements in BTC returns by enabling algorithms to e�ectively trade
the currency based on the most con�dent predictions made [23]. Intricate Deep
Learning (DL) models such as the Recurrent Neural Network (RNN), speci�-
cally the Long Short-Term Model (LSTM) have proved to be quite accurate in
predicting the prices [8]. In [33], a comparison of BTC price forcasting using
hybrid models such as LSTM and Deep Neural Network (DNN) is provided, and
it is observed that the DNN models o�ered a far higher level of accuracy over
other hybrid models. There have been a few studies that have noted that the
improvement in accuracies of advanced DL models have not been as signi�cant
as expected.

A few studies have emphasized on the fractal and multifractal analyses of
cryptocurrency price data. In [11], Bariveria demonstrates through the Rescaled
Hurst Exponent method and the Detrended Fluctuation Analysis (DFA) method
that the volatility of BTC daily prices have a pronounced degree of long memory,
an indication of the volatility clustering inherent in cryptocurrencies. Besides,
predominance in short amplitude volatility and anti-persistency in the Hurst
Exponent value and the magnitude of multifractal aspect of the time series
denote an absence of characteristic stability in BTC prices and the rampant
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price �uctuations are believed to be a result of insu�cient regulation of the
cryptocurrency [34]. Taking structural breaks into cognizance, the prices of 12
major cryptocurrencies have been found to display volatility-persistence, which
needs to be given due consideration by investors in their long-term forecasting
practices of cryptocurrency prices [1].

8.2 Causation in Crypto-Volatility

Studies on interconnections between volatility and shocks among large cryp-
tocurrencies reveal that Litecoin and BTC lie at the heart of the volatility in-
terconnections. Ripple has a noticeable tendency to absorb negative-return jolts
in the prices of other cryptocurrencies while Dash and Ethereum exhibit very
insigni�cant interconnectedness with the volatilities of other major cryptocur-
rencies in the economy [29]. As to the relationship between the S&P 500 and
volatility in cryptocurrency prices, the GARCH-MIDAS models have been em-
ployed and results show that volatility realized in the S&P 500 is very likely
to bear a signi�cant but negative impact on the cryptocurrency prices in terms
of their long-term volatility. Also, there has been a substantial positive cor-
relation established between the BTC price volatility and the �uctuations in
the Baltic Dry Index [5]. On the other hand, the impact of oil markets on the
macroeconomic attributes of various regimes have been found to in�uence the
degrees of volatility in major cryptocurrencies. Investors in such case are found
to transition in favour of cryptocurrency markets as a measure to hedge against
sovereign uncertainties arising out of oil shocks [21]. Focusing on the relative con-
vergences among the prices of eight predominant cryptocurrencies, the market
microstructure is found to be the most signi�cant driver of the convergences and
the con�uences are signi�cantly noted among cryptocurrencies with diverse func-
tionalities. Moreover, studies have also encountered close relationships between
the introduction of BTC futures contract in the Chicago Board of Exchange and
the convergence in prices of major cryptocurrencies � owing to the widespread
emergence of cryptocurrency backed instruments, in kind as well as scale, in the
open economy [26]. Focusing on the e�ect of �nature of a blockchain� on the
price volatility of cryptocurrency, in [35], Saleh points out that price-volatility is
a dominant feature of cryptocurrencies with Proof of Work (PoW) blockchain,
since such blockchain tend to execute passive monetary policies, which are pre-
dominantly reactive in nature. As an alternative consensus algorithm � Proof
of Burn (POB) adopts a proactive approach towards monetary policy, reducing
any whimsical volatility in the system. POB can only reduce the liquidity and it
is irreversible, whereas in XRP setup the liquidity can be increased on demand
and therefore we believe it is a good/practical candidate for our investigation of
volatility.

8.3 Supporting Observations

� Correlation tests: The bidirectional correlation between BTC daily transac-
tion volumes and VIX Granger for the period of July 2020 to July 2021 has
been computed and is found to be 0.3655.
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� Engle Test: Using Engle Test for ARCH, we fail to reject the null hypotheses
and failure to reject the null hypothesis implies our time-series data is not
homoscedastic.

� Granger Causality Test for BTC & XRP Volumes: The Granger Causal-
ity Test has been performed to assess the causality of BTC & XRP Daily
Transaction Volume on VIX Granger and VIX Granger on BTC & XRP
Daily Transaction Volume up to four lags. Both of these tests show no sig-
ni�cant causality. The parameters used to test causality of XRP daily volume
on VIX Ganger are provided in Table 9.

9 Conclusions

We �nd that SARIMA (seasonality adjusted ARIMA) models satisfactorily pre-
dict the transaction volume of both XRP and BTC, but not the price. Accounting
for seasonality in the time-series, prediction of daily transaction volumes posits
a much lower prediction error as compared to the baseline model. Furthermore,
Granger causality tests between a popular index of stock market volatility and
BTC/XRP daily transaction volumes reveal a negligible correlation. We posit
that a deeper understanding of volatility of cryptocurrencies, particularly those
associated with semi-permissioned blockchain such as XRP will shed a light on
their suitability for �nancial transactions including cross-border transfers and
CBDCs. We intend to make use of AI/ML techniques to further investigate this
research direction; further improving our current �ndings using SARIMA.

Our study contributes to the growing literature on volatility of cryptocur-
rencies (e.g., [18]). We aim to continue this research to �nd alternative model
speci�cations on the lines of [39] that use alternative time-series model speci-
�cations. Our current work is speci�cally useful in predicting the transactions
volume (volatility) of prominent global �at currencies on XRP network. This
capability can be used in Ripple's XRP network for: i) correcting transaction or-
dering �aws leading to temporary volatility in the network, ii) identifying source
of volatility by checking whether the volatility in XRP is following the volatility
in other stable currencies, iii) preventing exploitation of the Ripple's network;
i.e., a few trusted users from UNL taking advantage of predicting the volume
and blocking or slowing down the network. From a market development per-
spective, there are concerns that higher volatility, trading volume may indicate
the presence of bubbles across cryptocurrencies. We would also like to �nd out
correlations, if any, between a speci�c class of events (including the ones listed
in [3]) and the volatility on XRP network � and its impact on transaction fees �
this will help �nancial entities to provision their transactions better. Transaction
volumes and prices exhibit fundamentally di�erent behaviour that needs deeper
examination for assessment of stability of the cryptocurrencies.
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A Prediction of Transaction Volumes

A.1 AIC, BIC, and HQIC tests to con�rm parameters

To get a statistical signi�cance of empirically selected ARIMA parameters, AIC,
BIC and HQIC tests are widely used in the literature [22]. The aim of these tests

https://wp.diem.com/en-US/wp-content/uploads/sites/23/2020/04/Libra_WhitePaperV2_April2020.pdf
https://wp.diem.com/en-US/wp-content/uploads/sites/23/2020/04/Libra_WhitePaperV2_April2020.pdf


20 S. Gaurav et al.

is to �nd the parameters that gives a model with the lowest value of the selected
information criterion.

p ↓
q →

0 1 2

0 709.553588 594.475659 559.54405

1 653.548756 - -

2 632.871719 - -

3 615.542656 567.333071 -

4 603.816827 566.505444 -

5 602.270328 567.420411 -

Table 5: AIC values for various parameters (for BTC)

p ↓
q →

0 1 2

0 715.111835 602.813030 570.660544

1 661.886127 - -

2 643.988213 - -

3 629.438273 584.007812 -

4 620.491568 585.959309 -

5 621.724192 589.653399 -

Table 6: BIC values for various parameters (for BTC)

In above Tables 5, 6, and 7, the missing values (represented by - ) are the
instances where training of ARIMA model did not converge.

It can be inferred that ARIMA model is giving lower value of selected in-
formation criterion for q value of 1 than for q value of 0 and for q value of 1,
BIC and HQIC are lowest for p value of 3 while AIC is lowest for p value of 2
although not by a large margin. These observations verify that the empirically
estimated p and q values are statistically sound and can be used for forecasting
of our timeseries.

A.2 Ljung-Box Test Hypotheses

A signi�cant p-value in this test rejects the null hypothesis that the time series
isn't autocorrelated. We performed this test [27] on the residuals of our time-
series.
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p ↓
q →

0 1 2

0 711.810617 597.861202 564.058107

1 656.934299 - -

2 637.385776 - -

3 621.185227 574.104157 -

4 610.587913 574.405044 -

5 610.169928 576.448525 -

Table 7: HQIC values for various pameters (for BTC)

lag lb_pvalue lb_stat
1 0.593384 0.285091

2 0.768140 0.527566

3 0.729821 1.297103

4 0.278596 5.085906

5 0.391157 5.206886

6 0.485033 5.470467

7 0.328934 8.041664

8 0.208098 10.888496

9 0.091503 14.979415

10 0.132357 14.991899

Table 8: Ljung-box test results at di�erent lags

A.3 ARIMA prediction and results for XRP transactions volume

We trained our ARIMA [2] model with parameters (3,1,1)4. For this we di-
vided our transactions volume data set of 1st July 2019 to 31st December 2019
into training and testing set. The training set consists of transactions from 1st
July 2019 to 31st October 2019 and testing set consists of transactions from 1st
November 2019 to 31st December 2019. We trained our ARIMA model on train-
ing set alone while keeping testing set hidden and then predicted transaction
values for dates in testing set using trained model. We get RSSE = 14.28 with
baseline model and we get RSSE = 11.75 with ARIMA forecast model. Clearly,
the error is lower in the ARIMA forecast model as compared to the baseline
model. This suggests that the ARIMA forecast model is better than the baseline
average model.

To see if the residual in our ARIMA model is not skewed, we plot the residual
and compare it with Gaussian distribution in Figure 9. The mean and standard
deviation come out to be 0.08 and 2.52 respectively. We also plot the gaussian
distribution with dotted line with the same mean and standard deviation for
comparison. We observe that the mean is around 0 and the distribution is similar

4 using implementation from statsmodels library of Python
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Fig. 9: Plot of the residual distribution and comparison with Gaussian distribu-
tion

to a gaussian distribution. Therefore, the residual is not skewed. Hence, the model

has a good �t.

B Granger Causality Test

The Granger Causality Test has been performed to assess the causality of BTC
& XRP Daily Transaction Volume on VIX Granger and VIX Granger on BTC
& XRP Daily Transaction Volume up to four lags. Both of these tests show no
signi�cant causality. The parameters used to test causality of XRP daily volume
on VIX Ganger are provided in Table 9.

In Table 10, no signi�cant causality has been established of BTC Daily Trans-
action Volume on VIX Granger.

In Table 11, no signi�cant causality has been established of VIX Granger on
BTC Daily Transaction Volume.

In Table 12, no signi�cant causality has been established of VIX Granger on
BTC Daily Transaction Volume.
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Lag = 1

ssr based F test: F=0.0550 p=0.8146 df_denom=512 df_num=1

ssr based chi2 test: chi2=0.0554 p=0.8140 df=1

likelihood ratio test: chi2=0.0554 p=0.8140 df=1

parameter F test: F=0.0550 p=0.8146 df_denom=512 df_num=1

Lag = 2

ssr based F test: F=0.2724 p=0.7617 df_denom=509 df_num=2

ssr based chi2 test: chi2=0.5501 p=0.7595 df=2

likelihood ratio test: chi2=0.5498 p=0.7596 df=2

parameter F test: F=0.2724 p=0.7617 df_denom=509 df_num=2

Lag = 3

ssr based F test: F=0.4111 p=0.7451 df_denom=506 df_num=3

ssr based chi2 test: chi2=1.2503 p=0.7410 df=3

likelihood ratio test: chi2=1.2488 p=0.7413 df=3

parameter F test: F=0.4111 p=0.7451 df_denom=506 df_num=3

Lag = 4

ssr based F test: F=1.1195 p=0.3465 df_denom=503 df_num=4

ssr based chi2 test: chi2=4.5583 p=0.3357 df=4

likelihood ratio test: chi2=4.5381 p=0.3381 df=4

parameter F test: F=1.1195 p=0.3465 df_denom=503 df_num=4

Table 9: Causality of XRP's Daily Tx Volume on VIX Granger

Lag = 1

ssr based F test: F=1.1787 p=0.2783 df_denom=361 df_num=1

ssr based chi2 test: chi2=1.1885 p=0.2756 df=1

likelihood ratio test: chi2=1.1866 p=0.2760 df=1

parameter F test: F=1.1787 p=0.2783 df_denom=361 df_num=1

Lag = 2

ssr based F test: F=0.7601 p=0.4684 df_denom=358 df_num=2

ssr based chi2 test: chi2=1.5415 p=0.4627 df=2

likelihood ratio test: chi2=1.5382 p=0.4634 df=2

parameter F test: F=0.7601 p=0.4684 df_denom=358 df_num=2

Lag = 3

ssr based F test: F=0.5410 p=0.6545 df_denom=355 df_num=3

ssr based chi2 test: chi2=1.6551 p=0.6470 df=3

likelihood ratio test: chi2=1.6514 p=0.6478 df=3

parameter F test: F=0.5410 p=0.6545 df_denom=355 df_num=3

Lag = 4

ssr based F test: F=1.5771 p=0.1799 df_denom=352 df_num=4

ssr based chi2 test: chi2=6.4696 p=0.1667 df=4

likelihood ratio test: chi2=6.4123 p=0.1704 df=4

parameter F test: F=1.5771 p=0.1799 df_denom=352 df_num=4

Table 10: Causality of BTC Daily Transaction Volume on VIX Granger
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Lag = 1

ssr based F test: F=0.4432 p=0.5060 df_denom=361 df_num=1

ssr based chi2 test: chi2=0.4469 p=0.5038 df=1

likelihood ratio test: chi2=0.4467 p=0.5039 df=1

parameter F test: F=0.4432 p=0.5060 df_denom=361 df_num=1

Lag = 2

ssr based F test: F=0.8063 p=0.4473 df_denom=358 df_num=2

ssr based chi2 test: chi2=1.6351 p=0.4415 df=2

likelihood ratio test: chi2=1.6315 p=0.4423 df=2

parameter F test: F=0.8063 p=0.4473 df_denom=358 df_num=2

Lag = 3

ssr based F test: F=0.8249 p=0.4808 df_denom=355 df_num=3

ssr based chi2 test: chi2=2.5235 p=0.4711 df=3

likelihood ratio test: chi2=2.5148 p=0.4726 df=3

parameter F test: F=0.8249 p=0.4808 df_denom=355 df_num=3

Lag = 4

ssr based F test: F=0.8720 p=0.4808 df_denom=352 df_num=4

ssr based chi2 test: chi2=3.5771 p=0.4662 df=4

likelihood ratio test: chi2=3.5595 p=0.4689 df=4

parameter F test: F=0.8720 p=0.4808 df_denom=352 df_num=4

Table 11: Causality of VIX Granger on BTC Daily Transaction Volume

Lag = 1

ssr based F test: F=0.0050 p=0.9434 df_denom=512 df_num=1

ssr based chi2 test: chi2=0.0051 p=0.9432 df=1

likelihood ratio test: chi2=0.0051 p=0.9432 df=1

parameter F test: F=0.0050 p=0.9434 df_denom=512 df_num=1

Lag = 2

ssr based F test: F=0.9214 p=0.3986 df_denom=509 df_num=2

ssr based chi2 test: chi2=1.8609 p=0.3944 df=2

likelihood ratio test: chi2=1.8575 p=0.3950 df=2

parameter F test: F=0.9214 p=0.3986 df_denom=509 df_num=2

Lag = 3

ssr based F test: F=1.0486 p=0.3707 df_denom=506 df_num=3

ssr based chi2 test: chi2=3.1892 p=0.3634 df=3

likelihood ratio test: chi2=3.1793 p=0.3648 df=3

parameter F test: F=1.0486 p=0.3707 df_denom=506 df_num=3

Lag = 4

ssr based F test: F=0.7670 p=0.5471 df_denom=503 df_num=4

ssr based chi2 test: chi2=3.1228 p=0.5375 df=4

likelihood ratio test: chi2=3.1133 p=0.5390 df=4

parameter F test: F=0.7670 p=0.5471 df_denom=503 df_num=4

Table 12: Causality of VIX Granger on XRP Daily Transaction Volume
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